Shear modulus reconstruction in dynamic elastography: time harmonic case.

نویسندگان

  • Eunyoung Park
  • Antoinette M Maniatty
چکیده

This paper presents a direct inversion approach for reconstructing the elastic shear modulus in soft tissue from dynamic measurements of the interior displacement field during time harmonic excitation. The tissue is assumed to obey the equations of nearly incompressible, linear, isotropic elasto-dynamics in harmonic motion. A finite element discretization of the governing equations is used as a basis, and a procedure is outlined to eliminate the need for boundary conditions in the inverse problem. The hydrostatic stress (pressure) is also reconstructed in the process, and the effect of neglecting this term in the governing equations, which is common practice, is considered. The approach does not require iterations and can be performed on sub-regions of the domain resulting in a computationally efficient method. A sensitivity study is performed to investigate the detectability of abnormal regions of different size and shear modulus contrast from the background. The algorithm is tested on simulated data on a two-dimensional domain, where the data are generated on a very fine mesh to get a near exact solution, then downsampled to a coarser mesh that is similar to the spatial discretization of actual data, and noise is added. Results showing the effect of the hydrostatic stress term and noise are presented. A reconstruction using MR measured experimental data involving a tissue-mimicking phantom is also shown to demonstrate the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dual-Stage Reconstruction Algorithm for Magnetic Resonance Elastography

METHODS Spin echo encoded, steady-state harmonic motion data was collected from a cylindrical, gelatine phantom containing multiple inclusions in order to test a dual-stage Magnetic Resonance Elastography (MRE) reconstruction approach. This reconstruction method uses a viscoelastic shear modulus distribution calculated from derivatives of filtered displacement values as an initial guess for an ...

متن کامل

Topical Review

Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This paper reviews current approaches to elastography in three areas—quasi-static, harmonic and transient—and describes inversion schemes for each elastographic imaging approach. Approaches include first-order approximation methods; direct and iterative inversi...

متن کامل

Multifrequency inversion in magnetic resonance elastography.

Time-harmonic shear wave elastography is capable of measuring viscoelastic parameters in living tissue. However, finite tissue boundaries and waveguide effects give rise to wave interferences which are not accounted for by standard elasticity reconstruction methods. Furthermore, the viscoelasticity of tissue causes dispersion of the complex shear modulus, rendering the recovered moduli frequenc...

متن کامل

Compression-sensitive magnetic resonance elastography.

Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk...

متن کامل

Magnetic Resonance Poroelastography of the Feline Brain

Introduction Magnetic resonance elastography (MRE) [1] is a quantitative physical examination focused on assessing the resistance to deformation or stiffness of tissue in vivo. MRE employs phase contrast MRI techniques to measure the displacement fields resulting from low amplitude, low frequency time-harmonic vibration. The mechanical property distributions associated with a given motion field...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 51 15  شماره 

صفحات  -

تاریخ انتشار 2006